[1] 孙明波. 超声速来流稳焰凹腔的流动及火焰稳定机制研究[D]. 长沙:国防科学技术大学, 2008.
[2] 刘瑜. 化学非平衡流的计算方法研究及其在激波诱导燃烧现象模拟中的应用[D]. 长沙:国防科学技术大学, 2008.
[3] 刘世杰. 连续旋转爆震波结构、传播模态及自持机理研究[D]. 长沙:国防科学技术大学, 2012.
[4] 刘君, 刘瑜, 周松柏. 基于新型解耦算法的激波诱导燃烧过程数值模拟[J]. 力学学报, 2010, 42(3):572-578.
[5] 刘世杰, 孙明波, 林志勇, 等. 钝头体激波诱导振荡燃烧现象的数值模拟[J]. 力学学报, 2010, 42(4):598-606.
[6] 孙明波, 梁剑寒, 王振国. 非平衡流解耦方法及其计算激波诱导燃烧的应用验证[J]. 航空动力学报, 2008, 23(11): 2055-2061.
[7] 归明月, 范宝春, 于陆军, 等. 聚心火焰与激波诱导相互作用及爆燃转爆轰过程[J]. 推进技术, 2007, 28(3): 248-252. (GUI Ming-yue, FAN Bao-chun, YU Lu-jun, et al. Interaction of Implosion Flame and Induced Shock Wave and DDT[J]. Journal of Propulsion Technology, 2007, 28(3).)
[8] Dinshaw, Balsara S, Shu C-W. Monotonicity Preserving Weighted Essentially Non-Oscillatory Schemes with Increasingly High Order of Accuracy[J]. Journal of Computational Physics, 2000, 160: 405-452.
[9] Zhang S, Jiang S, Shu C-W. Development of Nonlinear Weighted Compact Schemes with Increasingly Higher Order Accuracy[J]. Journal of Computational Physics, 2008, 227: 7294-7321.
[10] Yamaleev N K, Carpenter M H. A Systematic Methodology for Constructing High-Order Energy Stable WENO Schemes[J]. Journal of Computational Physics, 2009, 228: 4248-4272.
[11] 李虎, 张树海. 可压缩各向同性衰减湍流直接数值模拟研究[J]. 力学学报, 2012, 44(4): 674-686.
[12] 张德良. 计算流体力学教程[M]. 北京:高等教育出版社, 2006.
[13] 刘国昭, 张树道. 气相爆轰高阶中心差分-WENO组合格式自适应网格方法[J]. 计算物理, 2008, 25(4):387-395.
[14] Hill D J, Pullin D, Ortiz M, et al. An Eulerian Hybrid WENO Centered-Difference Solver for Elastic-Plastic Solids[J]. Journal of Computational Physics, 2010, 229: 9053-9072.
[15] Costa B, Don W S. High Order Hybrid Central-WENO Finite Difference Scheme for Conservation Laws[J]. Journal of Computational and Applied Mathematics, 2007, 204: 209-218.
[16] 侯中喜, 易仕和, 王承尧. 超声速开式空腔流动的数值模拟[J]. 推进技术, 2001, 22(5):400-403. (HOU Zhong-xi, YI Shi-he, WANG Cheng-yao. Numerical Analysis of Supersonic Open Cavity[J]. Journal of Propulsion Technology, 2001, 22(5).)
[17] Pirozzoli S. Conservative Hybrid Compact-WENO Schemes for Shock-Turbulence Interaction[J]. Journal of Computational Physics, 2002, 178: 81-117.
[18] Hill D J, Pullin D I. Hybrid Tuned Center-Difference-WENO Method for Large Eddy Simulations in the Presence of Strong Shocks[J]. Journal of Computational Physics, 2004, 194 : 435-450.
[19] Kim D, Kwon J H. A High-Order Accurate Hybrid Scheme Using a Central Flux Scheme and a WENO Scheme for Compressible Flowfield Analysis[J]. Journal of Computational Physics, 2005, 210: 554-583.
[20] Ren Y-X, Liu M, Zhang H. A Characteristic-Wise Hybrid Compact-WENO Scheme for Solving Hyperbolic Conservation Faws[J]. Journal of Computational Physics, 2003, 192: 365-386.
[21] Yee H C, Sandham N D, Djomehri M J. Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic-Based Filters[J]. Journal of Computational Physics, 1999, 150: 199-238.
[22] Ziegler J L. Simulations of Compressible, Diusive, Reactive Flows with Detailed Chemistry Using a High-Order Hybrid WENO-CD Scheme[D]. California: California Institute of Technology, 2012.
[23] Shu C-W. High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems[J]. Society for Industrial and Applied Mathematics, 2009, 51(1): 82-126.
[24] Gerolymos G A, Sénéchal D, Vallet I. Very-High-Order WENO Schemes[J]. Journal of Computational Physics, 2009, 228: 8481-8524.
[25] Mcvey J B, Toong T-Y. Mechanism of Instability of Exothermic Hypersonic Blunt-Body Flows[J]. Combustion Science and Technology, 1971, 3(1971): 63-76. * 收稿日期:2015-03-06;修订日期:2015-05-28。基金项目:国家自然科学基金(50906098)。作者简介:刘朝阳,男,博士生,研究领域为高超声速推进技术。E-mail: chaoyangliucn@163.com(编辑:梅瑛)
|